ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
ઓછામાં ઓછી $2$ છાપ મળે.
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $D$ be the event of the occurrence of at least $2$ heads.
Accordingly, $D =\{ HHH ,\, HHT \,, HTH \,, THH \}$
$\therefore P(D)=\frac{n(D)}{n(S)}=\frac{4}{8}=\frac{1}{2}$
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B$ પરસ્પર નિવારક અને નિઃશેષ છે.
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે ભૂરા રંગની ન હોય, તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
બે પાસાને ઉછાળવામાં આવે છે.જો બે પાસા પરના અંકોનો સરવાળો સાત થાય તેની સંભાવના મેળવો.
એક રિલે દોડમાં પાંચ ટુકડીઓ $A, B, C, D$ અને $E$ એ ભાગ લીધો છે. $A, B$ અને $C$ ક્રમમાં પહેલા, બીજા અને ત્રીજા સ્થાને આવે તેની સંભાવના શું છે?
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
વધુમાં વધુ બે કાંટા મળે.